(Last updated Dec. 16, 2025. See Google Scholar for most up-to-date publications)
Research Themes: (select to filter)
Zhu, H., Yuan, S., Tang, M. et al.. Molecular graph-based invariant representation learning with environmental inference and subgraph generation for out-of-distribution generalization. Journal of Cheminformatics. (2026) DOI: 10.1186/s13321-025-01142-w
molecular representation medical chemistry
Xu, K., Wang, J., Liu, M., Zhou, K., Lin, S., Li, W., Shi, L., Zhou, P., Liu, H. and Yao, X.. Efficient Generation of Protein and Protein-Protein Complex Dynamics via SE(3)-Parameterized Diffusion Models. Journal of Chemical Information and Modeling. (2025) DOI: 10.1021/acs.jcim.5c01971
Physics-based modeling medical chemistry
Liu, D., Song, T., Wang, S., Li, X., Han, P., Ju, G., Wang, J. and Wang, S.. DiffMeta-RL: Reinforcement Learning-Guided Graph Diffusion for Metabolically Stable Molecular Generation. Journal of Chemical Information and Modeling. (2025) DOI: 10.1021/acs.jcim.5c02060
medical chemistry
Liu, D., Song, T., Wang, S., Li, X., Han, P., Wang, J. and Wang, S.. AlphaPPIMI: A Comprehensive Deep Learning Framework for Predicting PPI-Modulator Interactions. Journal of Cheminformatics. (2025) DOI: 10.1186/s13321-025-01077-2
medical chemistry bioinformatics and cheminfo
Du, W., Zhang, S., Cai, Z., Li, X., Liu, Z., Fang, J., Wang, J., Wang, X. and Wang, Y.. Molecular Merged Hypergraph Neural Network for Explainable Solvation Free Energy Prediction. Research. (2025) DOI: 10.34133/research.0740
medical chemistry bioinformatics and cheminfo
Xiao, Y., Rodríguez‐Patón, A., Wang, J., Zheng, P., Ma, T., & Song, T.. Programmable DNA-based Molecular Neural Network Biocomputing Circuits for Solving Partial Differential Equations. Advanced Science. (2025) DOI: 10.1002/advs.202507060
bioinformatics and cheminfo Physics-based modeling
Zhou, P., Wang, J., Li, C., Wang, Z., Liu, Y., Sun, S., Lin, J., Wei, L., Cai, X., Lai, H. and Liu, W.. Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model. BMC Biology. (2025) DOI: 10.1186/s12915-025-02200-3
medical chemistry bioinformatics and cheminfo
Li, X., Cao, B., Wang, J., Meng, X., Wang, S., Huang, Y., Petretto, E. and Song, T.. Predicting mutation-disease associations through protein interactions via deep learning. IEEE Journal of Biomedical and Health Informatics. (2025) DOI: 10.1109/JBHI.2025.3541848
medical chemistry bioinformatics and cheminfo
Wang, J., Mao, J., Li, C., Xiang, H., Wang, X., Wang, S., Wang, Z., Chen, Y., Li, Y., No, K.T. and Song, T.. Interface-aware molecular generative framework for protein-protein interaction modulators. Journal of Cheminformatics. (2024) DOI: 10.1186/s13321-024-00930-0
medical chemistry design and optimization
Wang, J., Zhou, P., Wang, Z., Long, W., Chen, Y., No, K.T., Ouyang, D., Mao, J. and Zeng, X.. Diffusion-based generative drug-like molecular editing with chemical natural language. Journal of Pharmaceutical Analysis. (2024) DOI: 10.1016/j.jpha.2024.101137
medical chemistry design and optimization
Wang, J., Wang, X., Chu, Y., Li, C., Li, X., Meng, X., Fang, Y., No, K.T., Mao, J. and Zeng, X.. Exploring the conformational ensembles of protein-protein complex with transformer-based generative model. Journal of Chemical Theory and Computation. (2024) DOI: 10.1021/acs.jctc.4c00255
Physics-based modeling medical chemistry
Wang, M., Wang, J., Ji, J., Ma, C., Wang, H., He, J., Song, Y., Zhang, X., Cao, Y., Dai, Y. and Hua, M.. Improving compound-protein interaction prediction by focusing on intra-modality and inter-modality dynamics with a multimodal tensor fusion strategy. Computational and Structural Biotechnology Journal. (2024) DOI: 10.1016/j.csbj.2024.10.004
medical chemistry bioinformatics and cheminfo
Wang, S., Liang, D., Wang, J., Dong, K., Zhang, Y., Liang, H., Xu, X. and Song, T.. FraHMT: A fragment-oriented heterogeneous graph molecular generation model for target proteins. Journal of Chemical Information and Modeling. (2024) DOI: 10.1021/acs.jcim.4c00252
medical chemistry design and optimization
Gao, C., Bao, W., Wang, S., Zheng, J., Wang, L., Ren, Y., Jiao, L., Wang, J. and Wang, X.. DockingGA: Enhancing Targeted Molecule Generation using Transformer Neural Network and Genetic Algorithm with Docking Simulation. Briefings in functional genomics. (2024) DOI: 10.1093/bfgp/elae011
medical chemistry design and optimization
Jiang, L., Qu, S., Yu, Z., Wang, J. and Liu, X.. MOASL: Predicting drug mechanism of action through similarity learning with transcriptomic signature. Computers in Biology and Medicine. (2023) DOI: 10.1016/j.compbiomed.2023.107853
clinical pharmacy bioinformatics and cheminfo
Sun, H., Wang, J., Wu, H., Lin, S., Chen, J., Wei, J., Lv, S., Xiong, Y. and Wei, D.Q.. A multimodal deep learning framework for predicting PPI-modulator interactions. Journal of Chemical Information and Modeling. (2023) DOI: 10.1021/acs.jcim.3c01527
medical chemistry bioinformatics and cheminfo
Mao, J., Wang, J., Zeb, A., Cho, K.H., Jin, H., Kim, J., Lee, O., Wang, Y. and No, K.T.. Transformer-based molecular generative model for antiviral drug design. Journal of Chemical Information and Modeling. (2023) DOI: 10.1021/acs.jcim.3c00536
medical chemistry design and optimization
Wang, J., Mao, J., Wang, M., Le, X. and Wang, Y.. Explore drug-like space with deep generative models. Methods. (2023) DOI: 10.1016/j.ymeth.2023.01.004
medical chemistry design and optimization
Mao, J., Guan, S., Chen, Y., Zeb, A., Sun, Q., Lu, R., Dong, J., Wang, J. and Cao, D.. Application of a deep generative model produces novel and diverse functional peptides against microbial resistance. Computational and Structural Biotechnology Journal. (2022) DOI: 10.1016/j.csbj.2022.12.029
medical chemistry bioinformatics and cheminfo
Chu, Y., Zhang, Y., Wang, Q., Zhang, L., Wang, X., Wang, Y., Salahub, D.R., Xu, Q., Wang, J., Jiang, X. and Xiong, Y.. A transformer-based model to predict peptide–HLA class I binding and optimize mutated peptides for vaccine design. Nature Machine Intelligence. (2022) DOI: 10.1038/s42256-022-00459-7
design and optimization bioinformatics and cheminfo
Zhang, X., Wang, G., Meng, X., Wang, S., Zhang, Y., Rodriguez-Paton, A., Wang, J. and Wang, X.. Molormer: a lightweight self-attention-based method focused on spatial structure of molecular graph for drug–drug interactions prediction. Briefings in Bioinformatics. (2022) DOI: 10.1093/bib/bbac296
clinical pharmacy bioinformatics and cheminfo
Wang, J., Chu, Y., Mao, J., Jeon, H.N., Jin, H., Zeb, A., Jang, Y., Cho, K.H., Song, T. and No, K.T.. De novo molecular design with deep molecular generative models for PPI inhibitors. Briefings in Bioinformatics. (2022) DOI: 10.1093/bib/bbac285
medical chemistry design and optimization
Li, C., Yao, J., Wei, W., Niu, Z., Zeng, X., Li, J. and Wang, J.. Geometry-based molecular generation with deep constrained variational autoencoder. IEEE transactions on neural networks and learning systems. (2022) DOI: 10.1109/TNNLS.2022.3147790
medical chemistry design and optimization
Li, C., Wang, J., Niu, Z., Yao, J. and Zeng, X.. A spatial-temporal gated attention module for molecular property prediction based on molecular geometry. Briefings in Bioinformatics. (2021) DOI: 10.1093/bib/bbab078
medical chemistry design and optimization
Chen, Y., Ma, T., Yang, X., Wang, J., Song, B. and Zeng, X.. MUFFIN: multi-scale feature fusion for drug–drug interaction prediction. Bioinformatics. (2021) DOI: 10.1093/bioinformatics/btab169
clinical pharmacy bioinformatics and cheminfo
Qi, Z., Yang, G., Deng, T., Wang, J., Zhou, H., Popov, S.A.. Design and linkage optimization of ursane-thalidomide-based PROTACs and identification of their targeted-degradation properties to MDM2 protein. Bioorganic Chemistry. (2021) DOI: 10.1016/j.bioorg.2021.104901
clinical pharmacy bioinformatics and cheminfo